Rodríguez - López Laboratory
Advanced Electroanalysis for Energy Materials
Take a look at our Google Scholar page
Research Articles
* = equal contribution
130) Liu, X.; Yang, H.; Samajdar, R.; Woods, T.J.; Lin, O.; Chen, Q.; Romo, A.I.B.; Rodríguez-López, J.; Assary, R.S.; Moore, J.S.; Schroeder, C.M.
Shape-persistent ladder molecules exhibit nanogap independent conductance in single-molecule junctions
Nat. Chem. 2024, In Press.
Comparing rigid vs. floppy molecules!
129) Pence, M.A.; Hazen, G.; Rodríguez-López, J.
An Automated Electrochemistry Platform for Studying pH-dependent Molecular Electrocatalysis
Digital Discovery 2024, In Press.
Never run a manual titration again!
128) Gutierrez-Martin, D.; Asserghine, A.; Torres-Pardo, A.; Varela, A.; Rodríguez-López, J. Gonzalez-Calbet, J.M.; Parras, M.
Evaluating the Impact of Iron Impurities in KOH on OER Performance of BaNiO3 Single Crystals Using Scanning Electrochemical Cell Microscopy.
Electrochim. Acta 2024, 499, 144705.
We miss you Daniel!
127) Martins, P.H.R.*; Romo; A.I.B.*; Gouveia, F.S.; Paz, I.A.; Nascimento, N.R.F.; Andrade, A.L.; Rodríguez-López, J.; de Vasconcelos, M.A.; Teixeira, E.H.; Moraes, C.A.F.; Lopes, L.G.F.; de Sousa, E.H.S.
Anti-bacterial, anti-biofilm and synergistic effects of phenazine-based ruthenium (II) complexes
Dalton Trans. 2024, 53, 12627-12640.
Radicals, Attack!
126) Romo, A.I.B.*; Bello, L.*; Pudar, S.; Ibrahim, N.; Wang, Y.; Baran, M.J.; Wu, Q.; Ewoldt, R.H.; Helms, B.A.; Sing, C.; Rodríguez-López, J.
Controlling Charge Percolation in Solutions of Metal Redox Active Polymers: Implications of Microscopic Polyelectrolyte Dynamics on Macroscopic Energy Storage.
J. Am. Chem. Soc. 2024, 146, 25, 17474-17486.
Hippity hoppity electrons
125) Putnam, S.T.; Rodríguez-López, J.
Real-time investigation of reactive oxygen species and radicals evolved from operating Fe-N-C electrocatalysts during the ORR: potential dependence, impact on degradation, and structural comparison
Chem. Sci. 2024, 15, 10036-10045.
Gotta catch 'em all (the radicals)
124) Mishra, A.*; Lin, J-W.*; Zahiri, B.; Braun, P.; Rodríguez-López, J.
In Situ Investigation of Lattice Oxygen Loss from Preferentially Faceted Electrodeposited LiCoO2 via Scanning Electrochemical Microscopy
J. Electrochem. Soc. 2024, 171, 056510.
The (final) return of Messi
123) Asserghine, A.*; Kim, S.*; Vaid, T.P.; Santiago-Carboney, A.; McNeil, A.J.; Rodríguez-López, J.
Ionic Strength Impacts Charge Capacity in a Redox-Matched Flow Battery: From Single-Particle Interrogation to Battery Cycling
ACS Energy Lett. 2024, 9, 2826-2831.
Multiscale investigation of redox-flow batteries
122) Siddiqui, A.R; N'Diaye, J.; Santiago-Carboney, A.; Martin, K.; Bhargava, R.; Rodríguez-López, J.
Spectroelectrochemical Determination of Thiolate Self-Assembled Monolayer Adsorptive Stability in Aqueous and Non-Aqueous Electrolytes
Analyst 2024, 149, 2842-2854.
Stable as a graduate student (don't ask which electrolyte)
121) Sheng, H.*; Sun, J.*; Rodríguez, O.; Hoar, B.B.; Zhang, W.; Xiang, D.; Tang, T.; Hazra, A.; Min, D.S.; Doyle, A.G.; Sigman, M.S.; Costentin, C.; Gu, Q.; Rodríguez-López, J.; Liu, C.
Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation
Nat. Comm. 2024, 15, 2781.
100% Silicon Electrochemist
120) Mishra, A.; Zorigt, M.; Kim, D.O.; Rodríguez-López, J.
Voltammetric Detection of Singlet Oxygen Enabled by Nanogap Scanning Electrochemical Microscopy
J. Am. Chem. Soc. 2024, 146, 13, 8847-8851.
Messi Strikes Back
119) de la Parra, L.S.M.; Romo, A.I.B.; Rodríguez-López, J. Nascimento, O.R.; Echeverria, G.A.; Piro, O.E.; Leon, I.E.
Promising Dual Anticancer and Antimetastatic Action by a Cu(II) Complex Derived from Acylhydrazone on Human Osteosarcoma Models
Inorg. Chem. 2024, 63, 11, 4925-4938.
Copper Cancer Killers
118) Siddiqui, A.; N'Diaye, J.; Martin, K.; Baby, A.; Dawlaty, J.; Augustyn, V.; Rodríguez-López, J.
Monitoring SEIRAS on a Graphitic Electrode for Surface-Sensitive Electrochemistry: Real-Time Electrografting
Anal. Chem. 2024, 96, 6, 2435-2444.
SEIRAS on graphene. So easy a caveman could do it!
117) Chagnot, M.; Abello, S.; Wang, R.; Dawlaty, J.; Rodríguez-López, J.; Zhang, C.; Augustyn, V.
Influence of Finite Diffusion on Cation Insertion-Coupled Electron Transfer Kinetics in Thin Film Electrodes
J. Electrochem. Soc. 2024, 171, 1.
Ion insertion in thin films
116) Randall, C.R.; Zou, L.; Wang, H. Hui, J.; Rodríguez-López, J.; Chen-Glasser, M.; Dura, J.A.; DeCaluwe, S.C.
Morphology of Thin-Film Nafion on Carbon as an Analogue of Fuel Cell Catalyst Layers
ACS Appl. Mater. Interfaces, 2024, 16, 3, 3311-3324..
Carbon + Nafion = Important Interfaces
115) Lu, J.*; Baby, A.*; Asserghine, A.*; Rodríguez-López, J.; Zhao, H.
Amino acid based ionic liquids for revitalization of sulfated lead anodes.
J. Power Sources, 2024, 591, 233824.
Bringing batteries back to life
114) Woo, H.K.; Gautam, A.K.; Barroso-Martinez, J.S.; Baddorf, A.P.; Zhou, K.; Choi, Y.Y.; He, J.; Mironenko, A.V.; Rodríguez-López, J. Cai, L.
Defect Engineering of WO3 by Rapid Flame Reduction for Efficient Photoelectrochemical Conversion of Methane into Liquid Oxygenates
Nano Letters, 2023, 23, 24, 11493-11500.
Using SECM to reveal the structural hallmarks of radical production
113) Asserghine, A.*; Baby, A.*; Gao, E.; Zhao, H.; Rodríguez-López, J.
Inducing and real-time monitoring of lead (de)sulfation processes using scanning electrochemical microscopy for applications in the refurbishment of lead-acid batteries.
Electrochim. Acta, 2023, 143620.
Watching sulfation with SECM!
112) Asserghine, A.; Baby, A.; Putnam, S.T.; Qian, P.; Gao, E.; Zhao, Z.; Rodríguez-López, J.
In Situ Detection of Reactive Oxygen Species Spontaneously Generated on Lead Acid Battery Anodes: A Pathway for Degradation and Self-Discharge at Open Circuit.
Chem. Sci., 2023, 14, 12292-12298.
The radicals are everywhere!
111) Oh, I.*; Pence, M.A.*; Lukhanin, N.G.*; Rodriguez, O.*; Schroeder, C.M.; Rodríguez-López, J.
The Electrolab: An open-source, modular platform for automated characterization of redox-active electrolytes
Device, 2023, 1, 100103.
The singularity has begun
110) Zhou, Y.; Rodríguez-López, J.; Moore, J.S.;
Heterogeneous Electromediated Depolymerization of Highly Crystalline Polyoxymethylene
Nat. Comm., 2023, 14, 4847.
Recycling Polymers with Electrons
109) Xiao, Y.; Zheng, P.; Yang, T.; Chakravarty, S.K.; Rodríguez-López, J.; Urban. A.; Li, Z.;
Integrated Combinatorial Synthesis, Characterization, and Test Platform for Lithium-Ion Battery Cathode Materials
J. Electrochem. Soc., 2023, 170, 050538.
Grinding Out Novel Li-Ion Cathode Materials
108) Mishra, A.; Sarbapalli, D.; Rodriguez, O.; Rodríguez-López, J.
Electrochemical Imaging of Interfaces in Energy Storage via Scanning Probe Methods: Techniques, Applications, and Prospects.
Annual Review of Analytical Chemistry, 2023, Volume 16, 15.1-15.23.
One stop shop for electrochemical scanning probe techniques!
107) Hameed, F.; Mohanan, M.; Ibrahim, N.; Ochonma, C.; Rodríguez-López, J.; Gavvalapalli, N.;
Controlling Π-Conjugated Polymer-Acceptor Interactions by Designing Polymers with a Mixture of Π-Face Strapped and Nonstrapped Monomers
Macromolecules, 2023, 56, 9, 3421-3429.
Custom Polymers for Controlled Interactions
106) Kim, J.; Mishra, A.; Braun, J.E.; Groll, E.A.; Rodríguez-López, J.; Ziviani, D.
Electrochemically driven phase transformation for high-efficiency heat pumping
Cell Reports Physical Science, 2023, 4, 101369.
Cool electrons for electrochemical cooling.
105) Hossain, M.S.*; Romo, A.I.B.*; Putnam, S.T.*; Dawlaty, J.; Augustyn, V.; Rodríguez-López, J.
Electrode potential driven dissociation of N-heterocycle-BF3 adducts: a possible manifestation of the electro-inductive effect
Angew. Chem. Int. Ed., 2023, e202304218
Look Mom, No Electrons!
104) Mishra, A.; Kim, J.; Zorigt, M.; Romo, A.I.B.; Gaddam, R.; Braun, J.E.; Ziviani, D.; Rodríguez-López, J.
Highly Selective TEMPO Catalyzed Bulk Electrooxidation of Isopropanol to Acetone for Application in Electrochemical Heat Pumping
ACS Sustainable Chem. Eng., 2023, 11, 16, 6241-6249.
TEMPO MAN!
103) Rodriguez, O.; Pence, M.A.; Rodríguez-López, J.
Hard Potato: A Python Library to Control Commercial Potentiostats and to Automate Electrochemical Experiments
Anal. Chem., 2023, 95, 11, 4840-4845.
Automated Electrochemistry for Everyone!
102) Danis, A.S.; Counihan, M.J.; Hatfield, K.O.; Zhang, J.; Agarwal, G.; Assary, R.S.;Rodríguez-López, J.
Colocalized Raman Spectroscopy - Scanning Electrochemical Microscopy Investigation of Redox Flow Battery Dialkoxybenzene Redoxmer Degradation Pathways
Electrochim. Acta, 2023, 447, 142123.
UME + Raman = Complete Degradation Analysis!
101) Hatfield, K.O.; Putnam, S.T.; Rodríguez-López, J.
Inducing SERS Activity at Graphitic Carbon Using Graphene-Covered Ag Nanoparticle Substrates: Spectroelectrochemical Analysis of a Redox-Active Adsorbed Anthraquinone
J. Chem. Phys., 2023, 158, 014701.
Brand New SERS!!! Now without metals! All natural organic carbon! Try it now!
100) Gaddam, R.*; Sarbapalli, D.*; Howard, J.; Curtiss, L.A.; Assary, R.S.; Rodríguez-López, J.
An SECM-Based Spot Analysis for Redoxmer-Electrode Kinetics: Identifying Redox Asymmetries on Model Graphitic Carbon Interfaces
Chem: Asian J., 2023, 18, 2, e202201120.
Ferrocene causing panic
99) Romo, A.I.B.; dos Reis, M.P.; Nascimento, O.R.; Bernhardt, P.V.; Rodríguez-López, J.; Diogenes, I.C.N.
Interplay of electronic and geometric structure on Cu phenanthroline, bipyridine, and derivative complexes, synthesis, characterization, and reactivity towards oxygen.
Coord. Chem. Rev., 2023, 477, 214943.
Everything you need to know about copper complexes!
98) Martins, P.H.R.; Romo, A.I.B.; da Silva, F.O.N.; Nascimento, O.R.; Rodríguez-López, J.; Diogenes, I.C.N.; Lopes, L.G.F.; Sousa, E.H.S.
Reactivity of a nitrosyl ruthenium complex and its potential impact on the fate of DNA - An in vitro investigation
J. Inorg. Biochem., 2023, 238, 112052.
Destroying DNA with radicals
97) Pence, M.A.; Rodriguez, O.; Lukhanin, N.G.; Schroeder, C.M.; Rodríguez-López, J.
Automated Measurement of Electrogenerated Redox Species Degradation Using Multiplexed Interdigitated Electrode Arrays
ACS Meas. Sci. Au, 2023, 3,1,62-72.
Electrochemistry so easy a computer could do it!
96) Zhao, Y.; Adams, J.S.; Baby, A.; Kromer. M.L.; Flaherty, D.W.; Rodríguez-López, J.
Electrochemical Screening of Au/Pt Catalysts for the Thermocatalytic Synthesis of Hydrogen Peroxide Based on Their Oxygen Reduction and Hydrogen Oxidation Activities Probed via Voltammetric Scanning Electrochemical Microscopy
ACS Sustainable Chem. Eng., 2022, 10, 51, 17207-17220.
Screening Catalysts with SECM!
95) Sarbapalli, D.; Lin, Y-H.; Stafford, S.; Son, J.; Mishra, A.; Hui, J.; Nijamudheen, A.; Romo, A.I.B.; Gossage, Z.T.; van der Zande, A.M.; Mendoza-Cortes, J.L.; Rodríguez-López, J.
A Surface Modification Strategy Towards Reversible Na-ion Intercalation on Graphitic Carbon Using Fluorinated Few-Layer Graphene
J. Electrochem. Soc., 2022, 169, 106522.
Stabilizing sodium in graphene
94) Barroso-Martinez, J.S.*; Romo, A.I.B.*; Pudar, S.; Putnam, S.T.; Bustos, E.; Rodríguez-López, J.
Real-Time Detection of Hydroxyl Radical Generated at Operating Electrodes via Redox-Active Adduct Formation Using Scanning Electrochemical Microscopy.
J. Am. Chem. Soc., 2022, 144, 41, 18896-18907.
Radically new detection methods
93) Mishra, A.; Sarbapalli, D.; Hossain, M.S.; Gossage, Z.T.; Li, Z.; Urban, A.; Rodríguez-López, J.
Highly Sensitive Detection and Mapping of Incipient and Steady-State Oxygen Evolution from Operating Li-Ion Battery Cathodes via Scanning Electrochemical Microscopy.
J. Electrochem. Soc., 2022, 169, 086501.
Your friendly, neighborhood oxygen detector
92) Rodrigues, B., S.; Branco, C., M.; Vicente, M., R., S.; Rodríguez-López, J.; Souza, J., S.
Influence of the solvent used for the microwave-assisted synthesis of W-BiVO4 on the properties and photoelectroactivity of W-BiVO4/WO3
ChemElectroChem, 2022, e202200098
Who says you can't microwave catalysts?
91) Qian, H.*; Counihan, M.*, J.; Doan, H.A.*; Ibrahim, N., A.; Danis, A., S.; Setwipatanachai, W.; Purwanto, N., S.; Rodríguez-López, J.; Assary, R., S.; Moore, J., S.
Mesolytic cleavage of homobenzylic ethers for programmable end-of-life function in redoxmers
J. Mater. Chem. A, 2022, Advance Article
Electrodes crack me up!
90) Zeng, Y.*; Gossage, Z.*, T; Sarbapalli, D.; Hui, J; Rodríguez-López, J.
Tracking Passivation and Cation Flux at Incipient Solid-Electrolyte Interphases on Multi-Layer Graphene using High Resolution Scanning Electrochemical Microscopy
ChemElectroChem 2022,9, e20210144
And Li+ wins the race, again!
89) Lawrence, M.J.; Celorrio, V.; Sargeant, E.; Huang, H.; Rodríguez-López, J.; Zhu, Y.; Gu, M.; Russell, A.E.; Rodriguez, P.
Insight into the Activity and Selectivity of Nanostructured Copper Titanates during Electrochemical Conversion of CO2 at Neutral pH via In Situ X-ray Absorption Spectroscopy
ACS Appl. Mater. Interfaces 2022, 14, 2, 2742-2753
2021
88) Cabana, J.; Alaan, T.; Crabtree, G.W.; Hatzell, M.C.; Manthiram, K.; Steingart, D.A.; Zenyuk, I.; Jiao, F.; Vojvodic, A.; Yang, J.Y.; Balsara, N.P.; Persson, K.A.; Siegel, D.J.; Haynes, C.L.; Mauzeroll, J.; Shen, M.; Venton, B.J.; Balke, N.; Rodríguez-López, J.; Rolison, D.R.; Shahbazian-Yassar, R.; Srinivasan, V.; Chaudhuri, S.; Couet, A.; Hattrick-Simpers, J.
NGenE 2021: Electrochemistry Is Everywhere
ACS Energy Lett. 2022, 7, 1, 368-374
87) Sarbapalli, D.; Mishra, A.; Rodríguez-López, J.
Pt/Polypyrrole Quasi-References Revisited: Robustness and Application in Electrochemical Energy Storage Research
Anal. Chem. 2021, 93, 42, 14048-14052
such stable, much wow, very fascinate!
86) Li, J.; Pudar, S.; Yu, H.; Li, S.; Moore, J.S.; Rodríguez-López, J.; Jackson, N.E.; Schroeder, C.M.
Reversible Switching of Molecular Conductance in Viologens is Controlled by the Electrochemical Environment
J. Phys. Chem. C 2021, 125, 40, 21862-21872
tackling charge transport in viologens, one counterion at a time
85) Romo, A.I.B.; Carepo, M.P.; Levin, P.; Nascimento, O.R.; Díaz, D.E.; Rodríguez-López, J.; Léon, I.E.; Bezerra, L.F.; Lemus, L.; Diógenes, I.C.N.
Synergy of DNA intercalation and catalytic activityof a copper complex towards improved polymerase inhibition and cancer cell cytotoxicity
Dalton Trans, 2021, 50, 11931-11940
redox vs. the evil cancer cells
84) Hatfield, K.O.; Gole, M.T.; Schorr, N.B.; Murphy, C.J.; Rodríguez-López, J. Surface-Enhanced Raman Spectroscopy-Scanning Electrochemical Microscopy: Observation of Real-Time Surface pH Perturbations
Anal Chem. 2021, 93, 22, 7792-7796
Creating new capabilities to follow surface reactivity live!
83) Adams, J.S.*; Kromer, M.L.*; Rodríguez-López, J.; Flaherty, D.W. Unifying Concepts in Electro- and Thermocatalysis toward Hydrogen Peroxide Production.
J. Am. Chem. Soc. 2021, 143, 21, 7940-7957
Electron transfer hides in mysterious places
82) Henckel, D.A; Counihan, M.J., Holmes, H.E; Chen, X; Nwabara, U.O.; Verma, S; Rodríguez-López, J.; Kenis, Paul J.A.; Gewirth, Andrew A. Potential Dependence of the Local pH in a CO2 Reduction Electrolyzer.
ACS Catal. 2021, 11, 1, 255-263
81) Hui, J.*; Nijamudheen, A.*; Sarbapalli, D.; Chang, X.; Qu, Z.; Mendoza-Cortes, J.L.; Rodríguez-López, J.
Nernstian Li+ intercalation into few-layer graphene and its use for the determination of K+ co-intercalation processes.
Chem. Sci., 2021, 559-568.
Falling in love with the versatility and speed of these electrodes!
80) Wang, Y; Counihan, M.J.; Lin, J.W.; Rodríguez-López, J.; Yang, H; Lu, Y. Quantitative Analysis of DNA-Mediated Formation of Metal Nanocrystals.
J. Am. Chem. Soc., 2020, 142, 20368-20379.
79) Kromer, M.L; Simpson, B.H.; Rodríguez-López, J.
Evaluating the impact of catalyst selection and semiconductor band edge on the photoelectrochemical production of
H2O2 via a real-time in situ probe.
J. Electroanal. Chem. 2020, 114677.
Developing SECM analysis for electrocatalysis in memory of Prof. A. Wieckowski
78) Gossage, Z.T.; Guo, F.; Hatfield, K.O.; Martin, T.A.; Tian, Q.; Gao, E.J.; Kumar, A.; Rodríguez-López, J.; Zhao, H.
Reconstruction of Lead Acid Battery Negative Electrodes After Hard Sulfation Using Controlled Chelation Chemistry.
J. Electrochem. Soc. 2020, 167, 120537.
Equilibrium chemistry to the service of refurbishing the most popular battery!
77) Doan, H.A.; Agarwal, G.; Qian, H.; Counihan, M.J.; Rodríguez-López, J.; Moore, J.S.; Assary, R.S.
Quantum Chemistry-Informed Active Learning to Accelerate the Design and Discovery of Sustainable Energy Storage Materials.
Chem. Mater. 2020, 32, 15, 6338-6346.
Powerful computation for predicting responsive redoxmers
76) Jiang, X.*; Lafoon, S.D.*; Chen, D.*; Pérez-Estrada, S.; Danis, A.S.; Rodríguez-López, J.; Garcia-Garibay, M.A.; Zhu, J.; Moore, J.S.
Kinetic Control in the Synthesis of a Mobius Tris((ethynyl)[5] helicene) Macrocycle Using Alkyne Metathesis.
J. Am. Chem. Soc., 2020, 142, 6493-6498.
A twist that explains three independent electron transfers
75) Li, S.*; Li, J.*; Yu, H.; Pudar, S.; Li, B.; Rodríguez-López, J.; Moore, J.S.; Schroeder, C.M.
Characterizing Intermolecular Interactions in Redox-Active Pyridinium-based Molecular Junctions.
J. Electroanal. Chem., 2020, 875, 114070
Redoxmer electrochemisttry at the atomic scale
74) Watkins, T.*; Sarbapalli, D.*; Counihan, M.J.*; Danis, A.S.*; Zhang, J.; Zhang, L.; Zavadil, K.R.; Rodríguez-López, J.
A Combined SECM and Electrochemical AFM Approach to Probe Interfacial Processes Affecting Molecular Reactivity
at Redox Flow Battery Electrodes
J. Mater. Chem. A., 2020, 8, 15734-15745
You can see the electrode, now you can't see the electrode.
73) Nijamudheen, A.; Sarbapalli, D.; Hui, J.; Rodríguez-López, J.; Mendoza-Cortes, J.L.
Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity on Few-Layer Graphene Electrodes.
ACS Appl. Mater. Interfaces, 2020, 12, 19393-19401.
If the bulk is created by god, and surfaces
by the devil, interfaces exist for the bold!
72) Gossage, Z.T.; Hui, J.; Sarbapalli, D.; Rodríguez-López.
Coordinated mapping of Li+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode.
Analyst. 2020, 145, 2631-2638.
Playing hopscotch at the edge of graphene
71) Schorr, N.B.; Counihan, M.J.; Bhargava, R.; Rodríguez-López.
Impact of Plasmonic Photothermal Effects on The Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning
Electrochemical Microscopy.
Anal. Chem. 2020, 92, 3666-3673.
Shining light onto graphene electrocatalysis
70) Kafle, P.; Zhang, F.; Schorr, N.B.; Huang, K.Y.; Rodríguez-López, J.; Diao, Y.
Printing 2D conjugated polymer monolayers and their distinct electronic properties.
Adv. Func. Mater. 2020, 1909787.
Of thin films and new cool collaborators
69) Syrek, K.; Sennik-Kubiek, A.; Rodríguez-López, J.; Rutkowska, M.; Zmudzki, P.; Hnida-Gut, K.E.;
Grudzien, J.; Chmielarz, L.; Sulka, G.D.
Reactive and morphological trends on porous anodic TiO2 substrates obtained at different annealing temperatures.
Int. J. Hydrogen Energy, 2020, 7, 4376-4389.
We miss you Karolina!
68) Mohammad-Pour, G.S.*; Hatfield, K.O.*; Fairchild, D.C.; Hernandez-Burgos, K.;
Rodríguez-López, J.; Uribe-Romo, F.J.
A Solid-Solution Approach for Redox-Active Metal-Organic Frameworks with Tunable Redox Conductivity
J. Am. Chem. Soc. 2019, 141, 51, 19978-19982.
Our splash into the world of MOFs
67) Gordon, Z.; Miller, T.J.; Leahy, C.A.; Matson, E.M.; Burgess, M.; Drummond, M.J.; Popescu, C.V.; Smith, C.M.; Lord, R.L.;
; Rodríguez-López, J.; Fout, A.R.
Characterization of Terminal Iron(III)-Oxo and Iron(III)-Hydroxo Complexes Derived from O2 Activation
Inorg. Chem. 2019, 58, 23, 15801-15811
Intriguing voltammograms included
66) Gossage, Z.T.; Hui, J.; Zeng, Y.; Flores-Zuleta, H.; Rodríguez-López, J.
Probing the reversibility and kinetics of Li+ during SEI formation and (de)intercalation on edge plane graphite using ion-sensitive scanning electrochemical microscopy
Chem. Sci., 2019, 10, 10749-10754
Li-ion, going with the flux!
65) Counihan, M.J.; Simpson, B.H.; Plaza-Dominguez, M.; Rodríguez-López, J.
Towards a Piezoelectric Electroanalytical Platform for Modulating Oxygen Reduction Reactivity on Platinum
J. Electrochem. Soc. 2019, 166 (14), 677-684
Adding a shake to the operation of electrocatalysts!
64) Counihan, M.J.; Setwipatanachai, W.; Rodríguez-López, J.
Interrogating the Surface Intermediates and Water Oxidation Products of Boron-Doped Diamond Electrodes with Scanning Electrochemical Microscopy
ChemElectroChem 2019, 6, 3507-351
A diamond in the ROS
63) Song, Z.; Fu, H.; Wang, J.; Hui, J.; Xue, T.; Pacheco, L.A.; Yan, H.; Baumgartner, R.; Wang, Z.; Xia, Y.; Wang, X.; Yin, L.; Chen, C.; Rodríguez-López, J.; Ferguson, A.L.; Lin, Y.; Cheng, J.
Synthesis of polypeptides via bioinspired polymerization of in situ purified N-carboxyanhydrides
PNAS 2019, 116 (22), 10658-10663
Electrochemistry to the service of polymer synthesis
62) Claudio-Cintrón, M. A.;Rodríguez-López, J.
Scanning Electrochemical Microscopy with Conducting Polymer Probes: Validation and Applications
Anal. Chim. Acta 1069 (2019) 36-46
Of ions and electrons: PEDOT to the rescue of SECM!
61) Li, B.*; Yu, H.*; Montoto, E.C.; Liu, Y.; Li, S.; Schwieter K.; Rodríguez-López, J.; Moore, J.S.; Schroeder, C.M.
Intrachain Charge Transport through Conjugated Donor-Acceptor Oligomers
ACS Appl. Electron. Mater. 2019, 1 (1), pp 7-12.
From electronics to electrochemistry
60) Hui, J.; Gossage, Z.T.; Sarbapalli, D.; Hernández-Burgos, K.; Rodríguez-López, J.
Advanced Electrochemical Analysis for Energy Storage Interfaces
Anal. Chem. 2019, 91 (1), 60-83.
Interfaces: The no man's land of batteries.
59) Schorr, N.B.; Hui, J.; Rodríguez-López, J.
Electrocatalysis on ultra-thin 2D electrodes: New concepts and prospects for tailoring reactivity
Curr. Opin. Electrochem. 2019, 13, 100-106.
Catalysis at the limit of when the electrode is the interface.
58) Hui, J.*; Schorr, N.B.*; Pakhira, S.*; Qu, Z.; Mendoza-Cortes, J.L.; Rodríguez-López, J.
Achieving Fast and Efficient K+ Intercalation on Ultrathin Graphene Electrodes Modified by a Li+ Based Solid-Electrolyte Interphase
J. Am. Chem. Soc. 2018, 140(42), 13599-13603.
Potassium intercalation the "Speedy Gonzalez" way: 10,000 times faster
57) Lawrence, M.J.; Celorrio, V.; Shi, X.; Wang, Q.; Yanson, A.; Adkins, N.J.E.; Gu, M.; Rodríguez-López, J.; Rodríguez, P.
Electrochemical Synthesis of Nanostructured Metal-doped Titanates and Investigation of Their Activity as Oxygen Evolution Photoanodes
ACS Appl. Energy Mater. 2018, 1(10), 5233-5244.
New materials engineering for oxygen evolution
56) Gossage, Z.T.; Hernandez-Burgos, K.; Moore, J.S.; Rodríguez-López, J.
Impact of Charge Transport Dynamics and Conditioning on Cycling Efficiency within Single Redox Active Colloids
ChemElectroChem 2018, 5(20), 3006-3013.
Single particle psychotherapy: tracking the life cycle of lonely battery particles with SECM
The Cover Feature illustrates single-particle nanoelectrochemical and spectroelectrochemical electrolysis experiments on individual redox-active colloids. Elucidating the nanoscopic origin of macroscopic performance issues in energy storage materials is key to creating safer, longer-lasting, and more efficient batteries.
55) Baran, M.J.; Braten, M.N.; Montoto, E.C.; Gossage, Z.T.; Ma, L.; Chenard, E.; Moore, J.S.; Rodríguez-López, J.; Helms, B.A.
Designing Redox-Active Oligomers for Crossover-Free, Non-Aqueous Redox-Flow Batteries with High Volumetric Energy Density
Chem. Mater. 2018, 30(11), 3861-3866.
Size-exclusion flow batteries by design. A great collaborative work!
54) Schorr, N.B.; Jiang, A.G.; Rodríguez-López, J.
Probing Graphene Interfacial Reactivity via Simultaneous and Co-Localized Raman-SECM Imaging and Interrogation
Anal. Chem. 2018, 90(13), 7848-7854.
SECM, Raman, and the pursuit of multimodal single site analysis
Cover art for Analytical Chemistry Vol 90, Issue 13. Represented in the cover for this issue is how colocalized Raman spectroscopy and scanning electrochemical microscopy correlate single-site electrochemical reactivity to surface structure in real-time and through versatile imaging.
53) Montoto, E.C.; Cao, Y.; Hernandez-Burgos, K.; Sevov, C.S.; Braten, M.N.; Helms, B.A.; Moore, J.S.; Rodríguez-López, J.
Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers
Macromolecules 2018, 51(10) 3539-3546
For redox stability of polymers, every carbon counts!
Cover art for Macromolecules Vol 51, Issue 10. Represented in the cover for this issue is how computational and molecular design of soluble redox-active polymers guides the choice of tether length for improved charged state stability, redox reversibility, and energy storage performance.
52) Schorr, N.B.; Gossage, Z.T.; Rodríguez-López, J.
Prospects for Single-Site Interrogation using In Situ Multimodal Electrochemical Scanning Probe Techniques
Curr. Opin. Electrochem. 2018, 8, 89-95.
Use all the techniques! At once! Wao such review!
51) Hui, J.; Pakhira, S.; Bhargava, R.; Barton, Z. J.; Zhou, X.; Chinderle, A. J.; Mendoza-Cortes, J. L.; Rodríguez-López, J.
Modulating Electrocatalysis on Graphene Heterostructures: Physically Impermeable yet Electronically Transparent Electrodes.
ACS Nano 2018, 12(3), 2980-2990.
Electocatalytic coupling across graphene interface
50) Krumov, M. R; Simpson, B. H.; Counihan, M. J.; Rodríguez-López, J.
In Situ Quantification of Surface Intermediates and Correlation to Discharge Products on Hematite Photoanodes using a Combined Scanning Electrochemical Microscopy Approach.
Anal. Chem. 2018, 90(5), 3050-3057.
Detecting key intermediates the SECM way during water oxidation on Hematite, a prospect solar photoanode
49) Burgess, M.*; Hernandez-Burgos, K.*; Schuh, J. K.; Davila, J.; Montoto, E. C.; Ewoldt, R. H.; Rodríguez-López, J.
Modulation of the Electrochemical Reactivity of Solubilized Redox Active Polymers via Polyelectrolyte Dynamics.
J. Am. Chem. Soc. 2018, 140(6), 2093-2104.
Polyelectrolyte dynamics meet soluble redox-polymers!
48) Kromer, M. L.*; Monzo, J.*; Lawrence, M.*; Kolodziej, A.*; Gossage, Z. T.; Simpson, B. H.; Morandi, S.; Yanson, A.; Rodríguez-López, J.; Rodríguez, P.
High Throughput Preparation of Metal Oxide Nanocrystals by Cathodic Corrosion and Their Use as Active Photocatalysts.
Langmuir. 2017, 33(46), 13295-13302.
Easy way to make photocatalyst nanoparticles. Just add water (and an AC waveform)!
47) Hernandez-Burgos, K.; Barton, Z. J.; Rodríguez-López, J.
Finding Harmony between Ions and Electrons: New Tools and Concepts for Emerging Energy Storage Materials.
Chem. Mater. 2017, 29(21), 8918-8931.
Electrons, Ions, Action! Such Perspective, wow.
Cover art for the Chemistry of Material Vol 29, Issue 21. Represented in the cover for this issue is the opening for Brahms Opus 90 (Symphony No. 3) played through redox polymers, particles, and ions, which serve as notes that highlight our interest in energy storage.
46) Iyer, V. A.; Schuh, J. K.; Montoto, E. C.; Pavan Nemani, V.; Qian, S.; Nagarjuna, G.; Rodríguez-López; Ewoldt, R. H.; Smith, K. C.,
Assessing the Impact of Electrolyte Conductivity and Viscosity on the Reactor Cost and Pressure Drop of Redox-Active Polymer Flow Batteries.
J. Power Sources 2017, 361, 334-344.
Applying experimental conditions to techno-economic modeling
45) Gossage, Z.T.*; Schorr, N.B.*; Hernandez-Burgos, K.; Hui, J.; Simpson, B.H.; Montoto, E.C.; Rodríguez-López, J.
Interrogating Charge Storage on Redox Active Colloids via Combined Raman Spectroscopy and Scanning Electrochemical Microscopy
Langmuir 2017, 33(37), 9455-9463.
SECM or Raman: why not both?
Cover art for the Langmuir special issue Fundamental Interfacial Science for Energy Applications.
44) Montoto, E.C.; Nagarjuna, G.; Moore, J.S.; Rodríguez-López, J.
Redox Active Polymers for Non-Aqueous Redox Flow Batteries: Validation of a Size-Exclusion Approach
J. Electrochem. Soc. 2017, 164(7), A1688-A1694.
Preventing crossover in porous separators by size-excluding polymers
43) Barton, Z. J.; Hui, J.; Schorr, N. B.; Rodríguez-López, J.
Detecting Potassium Ion Gradients at a Model Graphitic Interface.
Electrochim. Acta, 2017, 241, 98-105.
Isolating Flux of Potassium Ions from Total Substrate Activity
42) Barton, Z. J.; Rodríguez-López, J.
Fabrication and Demonstration of Mercury Disc-Well Probes for Stripping-Based Cyclic Voltammetry Scanning Electrochemical Microscopy (CV-SECM).
Anal. Chem., 2017, 89, 2716-2723.
Stripping-Based Ionic Imaging with Hg Disc-Well SECM Probes
41) Barton, Z. J.; Rodríguez-López, J.
Cyclic Voltammetry Probe Approach Curves (CV-PACs) with Alkali Amalgams at Mercury Sphere-Cap Scanning Electrochemical Microscopy (SECM) Probes.
Anal. Chem., 2017, 89, 2708-2715.
Theory and Guidelines for Stripping-Based CV-SECM
40) Burgess, M.*; Chenard, E.*; Hernandez-Burgos, K.*; Gavvalapalli, N.; Assary, R.S.; Hui, J.; Moore, J.S.; Rodríguez-López, J.
Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers
Chem. Mater., 2016, 28, 7362-7374.
-This publication was highlighted in the ACS Energy Editorial "Redox Flow Batteries"
Exploring Structure Chemical Interactions for Second Generation Polymers
39) Burgess, M.; Moore, J.S.; Rodríguez-López, J.
Redox Active Polymers as Soluble Nanomaterials for Energy Storage.
Acc. Chem. Res., 2016, 49 (11), 2649-2657.
A New Solution for Energy Storage
Cover art for the Accounts of Chemical Research special issue
38) Gossage, Z.T.; Simpson, B.H.; Schorr, N.B.; Rodríguez-López, J.
Soft Surfaces for Fast Characterization and Positioning of Scanning Electrochemical Microscopy Nanoelectrode Tips.
Anal. Chem., 2016, 88,9897-9901.
A Fast Approach to Nanoelectrochemistry
37) Montoto, E.C.*; Gavvalapalli, N.*; Hui, J.;Burgess, M.; Sekerak, N.M.; Hernandez-Burgos, K.; Wei, T.; Kneer, M.; Grolman, J.M.; Cheng, K.J.; Lewis, J.A.; Moore, J.S.; Rodríguez-López, J.
Redox Active Colloids as Discrete Energy Storage Carriers.
J. Am. Chem. Soc., 2016, 138, 13230-13237.
Versatile Nanoelectrochemistry for Energy Storage
36) Zhou, X.; Gossage, Z.T.; Simpson, B.H.; Hui, J.; Barton, Z.J.; Rodríguez-López, J.
Electrochemical Imaging of Photoanodic Water Oxidation Enhancements on TiO2 Thin Films Modified by Sub-Surface Al Nano-Dimers.
ACS Nano, 2016, 10, 9346-9352.
A closer chemical look at metal nanoparticle-enhanced photoelectrochemistry
35) Hui, J.; Zhou, X.; Bhargava, R.; Chinderle, A.; Zhang, J.; Rodríguez-López, J.
Kinetic Modulation of Outer-Sphere Electron Transfer Reactions on Graphene Electrode with a Sub-surface Metal Substrate.
Electrochimica Acta, 2016, 211, 1016-1023.
Enhancing interfacial reactivity through the thinnest electrode
34) Plaza, M.*; Huang, X.*; Ko, J.Y.P.; Brock, J.D.; Shen, M.; Simpson, B.H.; Rodríguez-López, J.; Ritzert, N.L.; Abruna, H.D.; Letchworth-Weaver, K.; Gunceler, D.; Arias, T.A.; Schlom, D.G.
Structure of the Photo-Catalytically Active Surface of SrTiO3.
J. Am. Chem. Soc., 2016, 138 (25), 7816-7819
A surface-sensitive versatile approach to photocatalysis
33) Burgess, M.; Hernandez-Burgos, K.; Cheng, K.J.; Moore, J.S.; Rodríguez-López, J.
Impact of Electrolyte Composition on the Reactivity of a Redox Active Polymer Studied through Surface Interrogation and Ion-Sensitive Scanning Electrochemical Microscopy.
Analyst, 2016, 141, 3842-3850.
Invited contribution to Emerging Investigators issue.
Elucidating optimal ionic interactions that enhance polymer reactivity for applications in redox flow batteries
32) Hui, J.; Burgess, M.; Zhang, J.; Rodríguez-López, J.
Layer Number Dependence of Li+ Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.
ACS Nano, 2016, 10, 4248-4257.
The unique behavior of Few Layer Graphene toward Li-ion intercalation
31) Barton, Z.J.; Rodríguez-López, J.
Emerging scanning probe approaches to the measurement of ionic reactivity at energy storage materials.
Anal. Bioanal. Chem., 2016, 408, 2707-2715.
Invited Contribution to Youn Investigators in Analytical and Bioanalytical Science.
Versatile ionics for next-generation batteries
30) Simpson, B.H.; Rodríguez-López, J.
Electrochemical imaging and redox interrogation of surface defects on operating SrTiO3 photoelectrodes.
J. Am. Chem. Soc., 2015, 137, 14865-14868.
First use of nanoelectrodes to see surface defects influencing adsorbate reactivity in situ
29) Burgess, M.; Hernandez-Burgos, K.; Simpson, B.H.; Lichtenstein, T.; Avetian, S.; Nagarajuna, G.; Cheng, K.J.; Moore, J.S.; Rodríguez-López, J.,
Scanning Electrochemical Microscopy and Hydrodynamic Voltammetry Investigation of Charge Transfer Mechanisms on Redox Active Polymers.
Journal of The Electrochemical Society, 2016, 163 (4) H3006-H3013. Invited Contribution for the Special Issue Honoring Allen J. Bard.
-This publication was awarded the Norman Hackerman Young Author award from the Electrochemical Society and also was selected as the cover figure.
A First Look on How Soluble Polymers React at Electrodes
Cover figure for the JES focus issue
28) Sevov, C.S.; Brooner, R.E.M.; Chenard, E.; Assary, R.S.; Moore, J.S.; Rodríguez-López.J.; Sanford, M.S.
Evolutionary Design of Low Molecular Weight Organic Anolytes for Applications in Nonaqueous Redox Flow Batteries.
J. Am. Chem. Soc. 2015, 137 (45), 14465-14472
*ACS Editors' Choice.
Designing and evaluating robust molecules for redox flow
27) Simpson, B.H.; Rodríguez-López, J. Emerging techniques for the in situ analysis of reaction intermediates on photo-electrochemical interfaces.
Anal. Methods, 2015, 7, 7029-7041.
Invited Contribution for the Emerging Investigator Issue.
Elucidating the Fate and Reactivity of Surface Photochemical Species
26) Simpson, B.H.; Rodríguez-López. Redox titrations via Surface Interrogation Scanning Electrochemical Microscopy at an Extended Semiconducting Surface for the Quantification of Photogenerated
Adsorbed Intermediates.
Electrochim. Acta, 2015, 179, 74-83.
Invited Contribution After the 65th ISE Meeting in Lausanne, Switzerland
Unleashing the Spatial and Temporal Power of SI-SECM for Photocatalysis
25) Duarte-Guevara, C.; Swaminathan, V.V.; Burgess, M.; Reddy Jr. B.; Salm, E.M.; Liu, Y.-S.; Rodríguez-López; Bashir, R. Quasi-Reference Electrodes for Robust ISFET Operation.
Analyst, 2015, 140, 3630-3641.
PPY does it - Mark
24) Cristarella, T.; Chinderle, A.; Hui, J.; Rodríguez-López. Single Layer Graphene as a Stable and Transparent Electrode for Non-Aqueous Radical Annihilation Electrogenerated Chemiluminescence.
Langmuir 2015, 31, 3999-4007
The World's Thinnest Electrode put to the Challenge of High Energy Electrochemistry
23) Minguzzi, A.; Battistel, D.; Rodríguez-López; Vertova, A.; Rondinini, S.; Bard, A.J.; Daniele, S. Rapid characterization of oxygen evolving electrocatalyst spot arrays by the substrate generation/tip collection mode of SECM with decreased O2 diffusion layer overlap.
J. Phys. Chem. C 2015, 119, 2941-2947.
A Powerful Method for Quantifying Localized Oxygen Evolution
22) Gavvalapalli, N.*; Hui, J.*; Cheng, K.; Lichtenstein, T.; Shen, M.; Moore, J.S.; Rodríguez-López. Impact of Redox Active Polymer Molecular Weight on the Electrochemical Properties and
Transport Across Porous Separators in Non-Aqueous Solvents.
J. Am. Chem. Soc. 2014, 136, 16309-16316.
A New Strategy for High Performance Non Aqueous Flow Batteries
21) Barton, Z.J.; Rodríguez-López. Lithium Ion Quantification using Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media.
Anal. Chem. 2014, 86, 10660-10667.
Imaging Ionic Reactivity for Imagining New Batteries
* = corresponding author
20) Ritzert, N.L.; Li, W.; Tan, C.; Rodriguez-Calero, G.G.; Rodríguez-López; Hernandez-Burgos, K.; Conte, S.; Parks, J.J.; Ralph, D.C.; Abruña, H.D. Single layer graphene as an electrochemical platform. Faraday Discuss. 2014, 172, 27-45.
19) Ritzert, N.L.; Rodríguez-López, J.; Tan, C.; Abruña, H.D. Kinetics of Interfacial Electron Transfer at Single Layer Graphene Electrodes in Aqueous and Non-Aqueous Solutions. Langmuir, 2013, 29(5), 1683-1694.
18) Rodríguez-López, J.; Videa-Vargas, M. Study of the Ion Transfer of Quaternary Ammonium Ions by SWV. J. Mex. Chem. Soc. 2012, 56(4), 417-425.
17) Rodríguez-López, J.; Shen, M.; Nepomnyashchii, A.B.; Bard, A.J. Scanning Electrochemical Microscopy Study of Ion Annihilation Electrogenerated Chemiluminiscence of Rubrene and [Ru(bpy)3]2+. J. Am. Chem. Soc. 2012, 134, 9240-9250.
16) Zigah, D.; Rodríguez-López, J.; Bard, A.J. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Phys. Chem. Chem. Phys. 2012, 14, 12764-12772.
15) Rodríguez-López, J.; Ritzert, N.L.; Mann, J.A.; Tan, C.; Dichtel, W.R.; Abruña, H.D. Surface Diffusion of Electrochemically Active Tripodal Motifs on Graphene, a Scanning Electrochemical Microscopy Approach. J. Am. Chem. Soc. 2012, 134, 6224-6236.
14) Tan, C.; Rodríguez-López, J.; Parks, J.J.; Ritzert, N.L.; Ralph, D.C.; Abruña, H.D. The Examination of the Reactivity of Graphene Imperfections Using Scanning Electrochemical Microscopy. ACS Nano 2012, 6, 3070-3079.
13) Mann, J.A.; Rodríguez-López, J.; Abruña, H.D.; Dichtel, W.R. Multivalent bonding motifs for the noncovalent functionalization of graphene. J. Am. Chem. Soc. 2011, 133, 17614-17617.
12) Rodríguez-López, J.; Minguzzi, A.; Bard, A.J. The reaction of various reductants with oxide films on Pt electrodes as studied by the Surface Interrogation Mode of Scanning Electrochemical Microscopy (SI-SECM). Possible validity of a Marcus relationship. J. Phys .Chem. C. 2010, 114, 18645-18655.
11) Wang, Q.; Rodríguez-López, J.; Bard, A.J. Evaluation of Chemical Reactions from Two Electrogenerated Species in Picoliter Volumes by Scanning Electrochemical Microscopy. Chem. Phys. Chem. 2010, 11, 2969-2978.
10) Shen, M.; Rodríguez-López, J.; Huang, J.; Liu, Q.; Zhu, X.-H.; Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence of Dithienylbenzothiadiazole Differential Reactivity of Donor and Acceptor Groups and Simulations of Radical Cation — Anion and Dication — Radical Anion Annihilations. J. Am. Chem. Soc. 2010, 132, 13453-13461.
9) Shen, M.; Rodríguez-López, J.; Lee, Y.-T.; Chen, C.-T.; Fan, F.F.-R.; Bard, A.J.; Electrochemistry and Electrogenerated Chemiluminescence of a Novel Donor-Acceptor FPhSPFN Red Fluorophore. J. Phys. Chem. C 2010, 114, 9772-9780.
8) Rodríguez-López, J.; Bard, A.J. Scanning Electrochemical Microscopy: Surface Interrogation of Adsorbed Hydrogen and the Open Circuit Catalytic Decomposition of Formic Acid at Platinum. J. Am. Chem. Soc. 2010, 132, 5121-5129.
7) Wang, Q.; Rodríguez-López, J.; Bard, A.J. The Reaction of Br2 with Adsorbed CO on Pt Studied by the Surface Interrogation Mode of Scanning Electrochemical Microscopy. J. Am. Chem. Soc. 2009, 131, 17046-17047.
6) Lin, C. L.; Rodríguez-López, J.; Bard, A.J. Micropipette Delivery-Substrate Collection Mode of Scanning Electrochemical Microscopy for the Imaging of Electrochemical Reactions and the Screening of Methanol Oxidation Electrocatalysts. Anal. Chem. 2009, 81, 8868-8877.
5) Jung, C.; Sánchez-Sánchez, C.M.; Lin, C.-L.; Rodríguez-López, J.; Bard, A.J. Electrocatalytic Activity of Pd-Co Bimetallic Mixtures for Formic Acid Oxidation Studied by Scanning Electrochemical Microscopy. Anal. Chem. 2009, 81, 7003-7008.
4) Rodríguez-López, J.; Alpuche-Aviles, M.A.; Bard, A.J. Interrogation of Surfaces for the Quantification of Adsorbed Species on Electrodes: Oxygen on Gold and Platinum in Neutral Media. J. Am. Chem. Soc. 2008, 130, 16985-16995.
3) Minguzzi A.; Alpuche-Aviles, M.A.; Rodriguez Lopez, J.; Rondinini, S.; Bard, A.J. Screening of Oxygen Evolution Electrocatalysts by Scanning Electrochemical Microscopy Using a Shielded Tip Approach. Anal. Chem. 2008, 80, 4055-4064.
2) Sánchez-Sánchez, C.M.; Rodríguez-López, J.; Bard, A.J. Scanning Electrochemical Microscopy. 60. Quantitative Calibration of the SECM Substrate Generation / Tip Collection Mode and Its Use for the Study of the Oxygen Reduction Mechanism. Anal. Chem. 2008, 80, 3254-3260.
1) Rodríguez-López, J.; Alpuche-Aviles, M.A.; Bard, A.J. Selective Insulation with Poly(tetrafluoroethylene) of Substrate Electrodes for Electrochemical Background Reduction in Scanning Electrochemical Microscopy. Anal. Chem. 2008, 80, 1813-1818.
6) Gossage, Z., T.; Hatfield, K., O.; Zhao, Y.; Gaddam, R.; Sarbapalli, D.; Mishra, A.; Rodríguez-López, J. Chapter 16. Application to Batteries and Fuel Cells. In Scanning Electrochemical Microscopy. Bard, A.J.; Mirkin, M.V., Eds. 2022, CRC Press, pp. 481-512.
[link]
5) Mishra, A.; Gossage, Z., T.; Sarbapalli, D.; Zhao, Y.; Rodríguez-López, J. Methods and Instrumentation in Energy Storage. Encylopedia of Electrochemistry, Eds. 2021, Wiley-VCH
[link]
4) Sarbapalli, D.; Mishra, A.; Hatfield, K., O.; Gossage, Z., T.; Rodríguez-López, J.
Chapter 9: Scanning electrochemical microscopy; a versatile tool for inspecting the reactivity of battery electrodes. Lao, C. Batteries: Materials principles and characterization methods, Eds. 2021, IOP in Renewable and Sustainable Power, p. 9-1 to 9-44
[link]
3) Por el Camino de la Investigación, experiencia doctoral en Austin
. Integratec, 15(79), Jul-Sep. 2008, p.14. [link]
2) Rodríguez-López, J.; Zoski, C.G.; Bard, A.J. Chapter 16. SECM applications to electrocatalysis and photocatalysis and surface interrogation. In Scanning Electrochemical Microscopy. Bard, A.J.; Mirkin, M.V., Eds. 2012, CRC Press, pp. 525-568. [link]
1) Rodríguez-López, J. Chapter 4: The Surface Interrogation Mode of Scanning Electrochemical Microscopy (SI-SECM): an approach to the study of adsorption and (electro)catalysis at electrodes. In Electroanalytical Chemistry, a series of advances. Vol. 24. Bard, A.J. and Zoski, C.G., Eds. 2012, CRC Press, pp. 287-352. [link]
Go back to top of page.